2 LABORATORINIS DARBAS

NUOLATINĖS SROVĖS (DC) GRANDINIŲ TYRIMAS

Laboratoriniame darbe nustatysime sąryšį tarp srovės ir įtampos, ištirsime nuosekliai, lygiagrečiai ir mišriai sujungtų rezistorių nuolatinės srovės grandinę, išmatuosime elektrinę galią.

Atliko stud.	Atliktas	
(grupė)		(data, dėst. parašas)
	Apgintas	
(vardas pavardė)		(data, dėst. parašas)

<u>Darbo tikslas</u> – įgyti teorines ir praktines žinias apie nuolatinės srovės elektros grandinių elementų jungimo būdus ir eksperimentiškai patikrinti Omo ir Kirchhofo dėsnius.

Turinys

- 1. Įtampos ir srovės sąryšio tyrimas ir Omo dėsnio patikrinimas.
- 2. Nuoseklaus varžų jungimo tyrimas ir antrojo Kirchofo dėsnio patikrinimas.
- 3. Lygiagretaus varžų jungimo tyrimas ir pirmojo Omo dėsnio patikrinimas.
- 4. Mišriosios nuosekliųjų ir lygiagrečiųjų rezistorių grandinės tyrimas.
- 5. Elektrinės galios nustatymas.

<u>Užduotis</u>

- Naudojant nuolatinės srovės šaltinį ištirti įtampos ir sorvės sąryšį ir nubraižyti priklausomybės charakteristiką.
- Išmatuoti nuosekliai sujungtų rezistorių įtampas ir srovės stiprius esant skirtingai nuolatinės srovės matinimo šaltinio įtampai, paskaičiuoti ekvivalentinę varžą ir įtampos kritimą.
- 3. Patikrinti antrąjį Kirchofo dėsni ir pagal Omo dėsnį paskačiuoti srovės stiprį.
- 4. Išmatuoti įtekančią ir ištekančią lygiagrečios rezistorių jungties bendrą srovę.
- 5. Išmatuoti lygiagrečiai sujungtų rezistorių įtampas ir srovės stiprius esant skirtingai nuolatinės srovės matinimo šaltinio įtampai, paskaičiuoti ekvivalentinę varžą
- 6. Patikrinti pirmąjį Kirchofo dėsni ir pagal Omo dėsnį paskačiuoti srovės stiprį.
- Išmatuoti srovės stiprį visuose grandinės mazguose ir įtampos kritimą rezistoriuose esant mišriam nuosekliųjų ir lygiagrečiųjų rezistorių jungimui ir paskaičiuoti varžas.
- 8. Nustatyti elektrinę galią matuojant srovę ir įtampą.

Darbo eiga:

2.1 Omo dėsnis

Šioje darbo dalyje voltmetru ir ampermetru matuosime įtampos ir srovės sąryšį rezistoriaus R1 (1 k Ω), kuris sumontuotas SO4203-6A modulyje (2.1 pav.). Matavimus atliksime nuolatinės srovės elektros grandinėje.

2.1 pav. Omo dėsnio bandymo schema.

- Įstatykite SO4203-6A modulį į UNITRAIN System stendą.
- Laidais sujunkite Omo dėsnio bandymo grandinę pagal 2.1 pav. (SO4203-6A modulį reikia sujungti su UNITRAIN System bloku). Prijunkite rezistorių R1 prie analoginio įėjimo A ir analoginio išėjimo S. Prijunkite šuntą prie analoginio įėjimo B ir prie rezistoriaus R1 bandymo grandinės.
- Kompiuteryje: Meniu Instruments → Voltage Sources → DC Source (prietaisai → įtampos šaltiniai → nuolatinės srovės šaltinis) atidarykite virtualųjį prietaisą DC Source ir pasirinkite lentelėje 2.1 nurodytus nustatymus. Tada įjunkite prietaisą mygtuku POWER (maitinimas).

2.1 lentelė. Nuolatinės srovės (DC) šaltinio nustatymai

Nuolatinės srovės (DC) šaltinio nustatymai				
Matavimo diapazonas 10 V				
Išėjimo įtampa	0 V			

Kompiuteryje: Meniu Instruments → Measuring devices → Voltmeter A (prietaisai → • matavimo prietaisai → voltmetras A) atidarykite virtualųjį prietaisą Voltmeter A ir pasirinkite 2.2 lentelėje pateiktus nustatymus.

2.2 lentelė. Voltmetro A nustatymai				
Voltmetro A nustatymai				
Matavimo diapazonas 10 V (DC)				
Darbo režimas AV				

- Kompiuteryje: Meniu Instruments → Measuring devices → Amperemeter B (prietaisai • \rightarrow matavimo prietaisai \rightarrow ampermetras B) atidarykite virtualujį prietaisą Ampermeter B ir pasirinkite 2.3 lentelėje nurodytus nustatymus.

2.3 lentelė. Ampermetro	В	nustatymai
-------------------------	---	------------

Ampermetro B nustatymai				
Matavimo diapazonas	10 mA (DC)			
Darbo režimas	AV			
Šuntas	10 Ω			

Naudodami nuolatinės srovės šaltinį nustatykite 1 V įtampą ir su ampermetrų išmatuo-• kite tekančią per rezistorių R1 srovę I. Keiskite (kas 1 V) įtampą nuolatinės srovės šaltinyje iki 10 V ir išmatuokite srovę I. Gautas srovės vertes įrašykite į 2.4 lentelę.

2.4	lentelė	Matavimu	rezultatai
2.7.	ientere.	Iviaca v minų	rezuntatai

<i>U</i> [V]	0	1	2	3	4	5	6	7	8	9	10
<i>I</i> [mA]											

Pagal gautus matavimų rezultatus nubraižykite $I = f(\underline{U})$ charakteristiką. •

•	Nustatykite	charakteristikos	gradientą	(priklausomybės	koeficientą):
		A/V			

• Nustatykite kaip matavimo rezultatai yra susiję su rezistoriaus R1 varža. Ar gauti rezultatai patvirtina Omo dėsnį?

2.2 Nuosekliai sujungti rezistoriai

Šioje darbo dalyje matuosime įtampą ir srovės stiprį nuosekliai sujungtų rezistorių R1 (1 k Ω), R2 (0.5 k Ω), R3 (1.5 k Ω), sumontuotų SO4203-6A modulyje. Matavimus atliksime nuolatinės srovės elektros grandinėje (2.3 pav.).

2.3 pav. Nuosekliai sujungtų rezistorių bandymo schema.

Istatykite SO4203-6A moduli i UNITRAIN System stendą. •

- Laidais nuosekliai sujunkite rezistorius R1, R2, R3 pagal 2.3 pav. (SO4203-6A modulį reikia sujungti su UNITRAIN System bloku). Rezistorius prijunkite prie analoginio įėjimo A ir analoginio išėjimo S. Prijunkite šuntą prie analoginio įėjimo B ir prie rezistorių bandymo grandinės.
- Kompiuteryje: Meniu Instruments \rightarrow Voltage Sources \rightarrow DC Source (prietaisai \rightarrow j-• tampos šaltiniai → nuolatinės srovės šaltinis) atidarykite virtualųjį prietaisą DC Source ir pasirinkite 2.5 lentelėje nurodytus nustatymus. Tada įjunkite prietaisą mygtuku POWER (maitinimas).

Nuolatinės srovės (DC) šalti	nio nustatymai
Matavimo diapazonas	10 V
Išėjimo įtampa	10 V

2.5 lentelė	Nuolatinės	srovės (DC)	šaltinio	nustatvi	mai
2.5 1011010.	1 uolatines	510105	DU	Sannio	mustary	mai

Kompiuteryje: Meniu Instruments → Measuring devices → Voltmeter A (prietaisai → matavimo prietaisai → voltmetras A) atidarykite virtualųjį prietaisą Voltmeter A ir pasirinkite 2.6 lentelėje pateiktus nustatymus.

2.6 lentelė.	Voltmetro A	nustatymai

Voltmetro A nustatymai				
Matavimo diapazonas 10 V (DC)				
Darbo režimas	AV			

• Kompiuteryje: Meniu Instruments → Measuring devices → Amperemeter B (prietaisai → matavimo prietaisai → ampermetras B) atidarykite virtualųjį prietaisą Amperemeter B ir pasirinkite 2.7 lentelėje nurodytus nustatymus.

2.,	, mastaty mai
Ampermetro B nust	atymai
Matavimo diapazonas	5 mA (DC)
Darbo režimas	AV
Šuntas	100 Ω

2.7 lentelė. Ampermetro B nustatymai

Išmatuokite įtampas U₁, U₂, U₃, ir srovės stiprius I₁, I₂, I₃ rezistoriuose R1, R2, R3 esant nuolatinės srovės šaltinio maitinimo įtampai U_š = 10 V, 8 V, 6 V, 5 V ir 4 V, o rezultatus surašykite į atitinkamas 2.7 lentelės eilutes.

			ι				
	U š [V]	U_1 [V]	U_2 [V]	<i>U</i> ₃ [V]	<i>I</i> ₁ [mA]	<i>I</i> ₂ [mA]	<i>I</i> ₃ [mA]
Band.1	10						
Band.2	8						
Band.3	6						
Band.4	5						
Band.5	4						

2.7 lentelė Matavimų ir skaičiavimų rezultatai

- Įtampa U₁ rezistoriuje R1 matuojama prijungus voltmetrą (A) prie lizdų X11, X12 (2.17 pav.). Prijungę voltmetrą prie lizdų X12 ir X15, išmatuokite įtampą U₂ ant rezistoriaus R2, o prijungę voltmetrą prie lizdų X15 ir X18 įtampą U₃ ant rezistoriaus R3.
- Srovės stipris I₁ rezistoriuje R1 matuojamas prijungus ampermetrą (B) prie lizdų X10, X11 (2.17 pav.). Prijungę ampermetrą tarp lizdų X13 ir X14, išmatuokite srovę I₂ (kad tai atliktumėte, ištraukite trumpiklį ir įstatykite jį į lizdus X10 ir X11). Tada išmatuokite srovę I₃ tarp lizdų X16 ir X17; šiam tikslui trumpiklį turėsite įstatyti tarp lizdų X13 ir X14.
- Susumuokite kiekvieno bandymo įtampas rezistoriuose (t. y. lentelės kiekvienos eilutės) ir gautus rezultatus palyginkite su antruoju Kirchhoffo dėsniu.

 $U_{\text{Band.1}} = U_1 + U_2 + U_3 = _$ $U_{\text{Band.2}} = U_1 + U_2 + U_3 = _$ $U_{\text{Band.3}} = U_1 + U_2 + U_3 = _$ $U_{\text{Band.4}} = U_1 + U_2 + U_3 = _$

 $U_{\text{Band.5}} = U_1 + U_2 + U_3 =$ _____

• Apskaičiuokite ekvivalentinę nuosekliosios grandines varžą: *R*_{ekv.} =_____

- Nustatykite, kiek procentų visos įtampos krinta ant kiekvieno rezistoriaus, kai $U_{\text{S}} = 10$ V.
- Kiek procentų visos įtampos (10 V) krenta ant R₁?_____
- Kokią procentinę dalį visos varžos sudaro R₁?______
- Kiek procentų visos įtampos (10 V) krenta ant R₂?
- Kokią procentinę dalį visos varžos sudaro R₂?______
- Kiek procentų visos įtampos (10 V) krenta ant R₃?_____
- Kokią procentinę dalį visos varžos sudaro R₃?_____
- Kiekviename iš bandymų pagal Omo dėsnį apskaičiuokite srovės stiprį naudojant išmatuotas įtampos vertes ir rezistorių varžas bei surašykite rezultatus į 2.8 lentelę.

	U š [V]	I ₁ [mA]	I ₂ [mA]	I ₃ [mA]
Band.1	10			
Band.2	8			
Band.3	6			
Band.4	5			
Band. 5	4			

2.8. lentelė.	Skaičiavimų	rezultatai
---------------	-------------	------------

• Gautus skaičiavimo rezultatus palyginkite su eksperimentiniais rezultatais.

2.3 Lygiagrečiai sujungti rezistoriai

Šioje darbo dalyje matuosime įtampą ir srovės stiprį lygiagrečiai sujungtų rezistorių R4 (5 k Ω), R5 (6 k Ω), R6 (5 k Ω), sumontuotų SO4203-6A modulyje, nuolatinės srovės elektros grandinėje (2.4 pav.).

2.4 pav. Lygiagrečiai sujungtų rezistorių bandymo schema.

- Įstatykite SO4203-6A modulį į UNITRAIN System stendą.
- Laidais nuosekliai sujunkite rezistorių R4, R5, R6 bandymo grandinę pagal 2.4 pav. (SO4203-6A modulį reikia sujungti su UNITRAIN System bloku). Rezistorius prijunkite prie analoginio įėjimo A ir analoginio išėjimo S. Prijunkite šuntą prie analoginio įėjimo B ir prie rezistorių bandymo grandinės.
- Kompiuteryje: Meniu Instruments → Voltage Sources → DC Source (prietaisai → įtampos šaltiniai → nuolatinės srovės šaltinis) atidarykite virtualųjį prietaisą DC Source ir pasirinkite 2.9 lentelėje nurodytus nustatymus. Tada įjunkite prietaisą mygtuku POWER (maitinimas).

Nuolatinės srovės (DC) šalt	tinio nustatymai
Matavimo diapazonas	10 V
Išėjimo įtampa	10 V

2.7 Tentere. Inuolatines si oves (DC) sattino nustationa	2.9	lentelė.	Nuolatinės	srovės (I	DC) šaltinio	nustatvmai
--	-----	----------	------------	-----------	--------------	------------

• Kompiuteryje: Meniu Instruments → Measuring devices → Voltmeter A (prietaisai → matavimo prietaisai → voltmetras A) atidarykite virtualųjį prietaisą Voltmeter A ir pasirinkite 2.10 lentelėje pateiktus nustatymus.

2.10 lentele. Volumetro A	nustatymai
Voltmetro A nusta	tymai
Matavimo diapazonas	20 V (DC)
Darbo režimas	AV

.10	lentelė.	Voltmetro	Α	nustatvmai
•••				mastatyman

• Kompiuteryje: Meniu Instruments → Measuring devices → Amperemeter B (prietaisai → matavimo prietaisai → ampermetras B) atidarykite virtualųjį prietaisą Amperemeter B ir pasirinkite 2.11 lentelėje nurodytus nustatymus.

F				
Ampermetro B nus	statymai			
Matavimo diapazonas	5 mA (DC)			
Darbo režimas	AV			
Šuntas	100 Ω			

2.11	lentelė.	Ampermetro	В	nustatymai
------	----------	------------	---	------------

Išmatuokite įtekančią į lygiagrečiąją rezistorių jungtį bendrą srovę I_A tarp lizdų X19 ir X20 (2.18 pav.). Įstatykite trumpiklį tarp X23 ir X24 taip prijungdami rezistorių R5 ir vėl išmatuokite srovę. Įstatykite trumpiklį tarp X25 ir X26, taip prijungdami varžą R6 ir taip pat išmatuokite srovę I_A. Prijunkite ampermetrą tarp lizdų X27 ir X28 ir visais trim atvejais pakartokite matavimą su iš lygiagrečiosios rezistorių jungties ištekančia srove I_B. Gautus rezultatus surašykite į 2.12 lentelę.

2.12. ICHICIC Matavilli (ICZultata	2.12.	lentelė	Matavimu	rezultata
------------------------------------	-------	---------	----------	-----------

Trumpiklių jungtys	I _A [mA]	$I_{\rm B}$ [mA]
X21-X22		
X21-X22, X23-X24		
X21-X22, X23-X24, X25-		
A26		

- Palyginkite sroves I_A ir I_B .
- Išmatuokite įtampas U_4 , U_5 , U_6 ir sroves stiprius I_4 , I_5 , I_6 rezistoriuose R4, R5, R6 esant nuolatinės srovės šaltinio maitinimo įtampai $U_5 = 10$, 8, 6, 5 ir 4 V, o rezultatus surašykite į atitinkamas 2.13 lentelės eilutes.

				·			
	U š [V]	<i>U</i> 4 [V]	U5 [V]	U6 [V]	<i>I</i> ₄ [mA]	<i>I</i> 5 [mA]	<i>I</i> ₆ [mA]
Band.1	10						
Band.2	8						
Band.3	6						
Band.4	5						
Band.5	4						

2.13. lentelė. Matavimų rezultatai.

- Matuojant srovės stiprį tekantį per kiekvieną rezistorių, ampermetrą jungiame vietoje trumpiklių atitinkamai tarp lizdų X21-X22, X23-X24 ir X25-X26, o likusiose dviejose grandinės šakose kiekvienu atveju trumpikliai paliekami įjungti.
- Prijunkite voltmetrą į atitinkamus lizdus ir išmatuokite įtampą rezistoriuose U₄ (lizdai X22-X17), U₅ (lizdai X24-X17) ir U₆ (lizdai X26-X17).
- Susumuokite tris tekančias rezistoriuose R4, R5, R6 kiekvieno bandymo sroves vertes ir šią sumą palyginkite su lygiagrečiosios rezistorių jungties srove *I*_B ir patikrinkite pirmuoju Kirchhoffo dėsniu.

 $I_{Band.1} = I_4 + I_5 + I_6 = _$ $I_{Band.2} = I_4 + I_5 + I_6 = _$ $I_{Band.3} = I_4 + I_5 + I_6 = _$ $I_{Band.4} = I_4 + I_5 + I_6 = _$ $I_{Band.5} = I_4 + I_5 + I_6 = _$

- Apskaičiuokite ekvivalentinę lygiagrečios grandines varžą: $R_{\rm ekv.} = _$
- Kiekviename iš bandymų pagal Omo dėsnį apskaičiuokite srovės stiprį naudojant išmatuotas įtampos vertės ir rezistorių varžas ir surašykite rezultatus į 2.14 lentelę.

		2		
	<i>U</i> š [V]	<i>I</i> ₁ [mA]	<i>I</i> ₂ [mA]	<i>I</i> ₃ [mA]
Band.1	10			
Band.2	8			
Band.3	6			
Band.4	5			
Band.4	4			

2.14.	lentelė.	Skaičiavimu	rezultatai.
	101100101	Sharena	10Lanuari.

• Gautus skaičiavimų rezultatus palyginkite su eksperimentiniais rezultatais.

2.4 Mišriosios nuosekliųjų ir lygiagrečiųjų varžų grandinės

Šioje darbo dalyje matuosime srovės stiprį grandinės mazguose ir įtampos kritimą rezistoriuose esant mišriai nuosekliųjų ir lygiagrečiųjų rezistorių grandinei SO4203-6A modulyje (2.5 pav.).

2.5 pav. Mišriai sujungtų rezistorių bandymo schema.

- Įstatykite SO4203-6A modulį į UNITRAIN System stendą.
- Laidais nuosekliai sujunkite rezistorių R4, R5, R6 bandymo grandinę pagal 2.5 pav. (SO4203-6A modulį reikia sujungti su UNITRAIN System bloku).
- Kompiuteryje: Meniu Instruments → Measuring devices → Voltmeter A (prietaisai → matavimo prietaisai → voltmetras A) atidarykite virtualųjį prietaisą Voltmeter A ir pasirinkite 2.15 lentelėje pateiktus nustatymus.

2.15 lentelė. Voltmetro A nustatymai				
Voltmetro A nustatymai				
Matavimo diapazonas	20 V (DC)			
Darbo režimas AV				

Kompiuteryje: Meniu Instruments → Measuring devices → Amperemeter B (prietaisai → matavimo prietaisai → ampermetras B) atidarykite virtualųjį prietaisą Amperemeter B ir pasirinkite 2.16 lentelėje nurodytus nustatymus.

2.16	lentelė.	Ampermetro	В	nustatymai
------	----------	------------	---	------------

Ampermetro B nustatymai				
Matavimo diapazonas	20 mA (DC)			
Darbo režimas	AV			
Šuntas	10 Ω			

Pirmiausia tirsime paprastąsias grandines, kuriose kiekvienas iš rezistorių R₇ ... R₁₀ prijungtas prie 15 V maitinimo įtampos, ir išmatuosime per varžą tekančią srovę. Grandinių schemose (2.19 pav.) parodyta grandinė, kurioje naudojamas rezistorius R₇. Taikant Omo dėsnį, pagal įtampą ir srovę apskaičiuojama atitinkama rezistoriaus varžos vertė, šias vertės surašykite į 2.17 lentelę.

Rezistorius	U	Ι	R
R ₇			
R 8			
R9			
R ₁₀			

2.17. lentelė. Matavimų rezultatai.

- Rezistoriaus R₁₁ varža 2 kΩ, o R₁₂ = 330 Ω. Apsakičiuokite abiejų rezistorių nuosekliosios jungties varžą: R₁₁₋₁₂ = _____
- Prijunkite +15 V gnybtą prie lizdo X39, o įžeminimo gnybtą prie lizdo X41 ir tarp lizdų X39 ir X40 išmatuokite per nuosekliąją R₁₁ ir R₁₂ jungtį tekančią srovę. Remdamiesi Omo dėsniu, pagal srovę ir įtampą nustatykite nuosekliosios jungties varžos vertę: R₁₁₋₁₂ = ______
- Gautą rezultatą palyginkite su pirmiau apskaičiuota verte _
- Įžeminimo gnybtą prijunkite prie lizdo X35, o +15 V gnybtą prie lizdo X9. Tarp lizdų X29- X30, X31-X32 ir X33-X34 įstatykite po vieną trumpiklį, kad sukurtumėte vieno rezistoriaus (R7) ir dviejų lygiagrečiai sujungtų rezistorių (R8 ir R9) nuosekliąją jungtį. Apskaičiuokite lygiagrečiosios R8 ir R9 jungties ekvivalentinę varžą Rekv.1 ir pagal šią vertę apskaičiuokite įtampos kritimą U7 ant R7, taip pat įtampos kritimą UE1 ant R8 ir R9. Vertes surašykite į 2.18 lentelę.

	Visa įtampa U0 =			Visa srovė I =	
	Apskaičiuota	Išmatuota		Apskaičiuota	Išmatuota
R 7			U_7		
Rekv.1			$U_{\rm E1}$		

2.18. lentelė.	Matavimų	ir skaičiav	vimų rezultatai
			í (

Žinant rezistoriaus R₁₀ vertę bei nuosekliosios R₁₁ ir R₁₂ jungties vertę, pabandykite apskaičiuoti sroves I₁₀ (per R₁₀ tekanti srovė) ir I₁₁₋₁₂ (per R₁₁ ir R₁₂ tekanti srovė) bei abiejų šakų bendrą srovę I (srovė tarp lizdų X41 ir X42). Tada nustatykite sroves matavimo prietaisais ir visas vertes surašykite į 2.19 lentelę.

	Apskaičiuota	Išmatuota		Apskaičiuota	Išmatuota
R ₁₀			I_{10}		
R 11-12			<i>I</i> ₁₁₋₁₂		
Rekv.2			Ι		

2.19. lentelė. Matavimų ir skaičiavimų rezultatai

• Prijunkite įžeminimo gnybtą prie lizdo X18, kad maitinimo įtampa būtų perduodama visai grandinei, ir trumpikliais sujunkite visą grandinę. Išmatuokite sroves visuose grandinės mazguose, taip pat išmatuokite įtampos kritimus ant visų rezistorių. Įtampas ant R₁₁ ir R₁₂ matuokite tiesiai prie rezistorių kojelių, nes tarp šių rezistorių nėra mata-vimo lizdų. Visas išmatuotas vertes surašykite į 2.20 ir 2.21 lenteles.

2.20. lentelė. Matavimų rezultatai

I7 (X29,X30)	I 8 (X31,X32)	I 9 (X33,X34)	I 13 (X35,X36)	I 10 (X37,X38)	I 11 (X39,X40)	I 12 (X41,X42)

2.21. lentelė. Matavimų rezultatai

$U_{7}(\mathbf{R}_{7})$	$U_{8}(\mathbf{R}_{8})$	$U_{9}(\mathbf{R}_{9})$	$U_{10}(\mathbf{R}_{10})$	$U_{11}(\mathbf{R}_{12})$	$U_{12}(\mathbf{R}_{12})$

 Pagal išmatuotas vertes apskaičiuokite bendrą grandinės varžą, taip pat apskaičiuokite bendrą varžą pasinaudodami teorinemis nuosekliojo ir lygiagrečiojo jungimo lygtimis: *R*_{bendr. išmatuota} =_____

 $R_{\text{bendr. teorine}} =$

2.5 Galios matavimas

Šioje darbo dalyje netiesiogiai nustatysime elektrinę galią matuojant srovę ir įtampą. grandinėje SO4203-6A modulyje (2.6 pav.).

2.6 pav. Elektrinės galios nustatymo grandinė

- Įstatykite SO4203-6A modulį į UNITRAIN System stendą ir laidais sujunkite bandymo grandinę pagal 2.6 pav. (SO4203-6A modulį reikia sujungti su UNITRAIN System bloku). Prijunkite rezistorių R1 prie analoginio įėjimo A ir analoginio išėjimo S. Prijunkite šuntą prie analoginio įėjimo B ir prie rezistoriaus R1 bandymo grandinės.
- Kompiuteryje: Meniu Instruments → Voltage Sources → DC Source (prietaisai → įtampos šaltiniai → nuolatinės srovės šaltinis) atidarykite virtualųjį prietaisą DC Source ir pasirinkite lentelėje 2.22 nurodytus nustatymus. Tada įjunkite prietaisą mygtuku POWER (maitinimas).

Nuolatinės srovės (DC) šaltinio nustatymai				
Matavimo diapazonas	10 V			
Išėjimo įtampa	0 V			

2 22	1 / 1.	NT 1 / ·	•	$(\mathbf{D} \mathbf{C})$	v 1/ · ·	•
1.11	lentele	Nuolatines	sroves	(1)())	salfinio	nustatvmai
	renterte.	1 (dolatilie)	510,00	$(D \cup)$	bartimo	mastatyman

• Kompiuteryje: Meniu Instruments → Measuring devices → Voltmeter A (prietaisai → matavimo prietaisai → voltmetras A) atidarykite virtualųjį prietaisą Voltmeter A ir pasirinkite 2.23 lentelėje pateiktus nustatymus.

2.25 fentele: Volumetro II	nustatymai				
Voltmetro A nustatymai					
Matavimo diapazonas	10 V (DC)				
Darbo režimas	AV				

2.2	23	lentelė.	Voltmetro	A	nustatymai
2.2		ientere.	vonneuo		nusturymu

• Kompiuteryje: Meniu Instruments → Measuring devices → Amperemeter B (prietaisai → matavimo prietaisai → ampermetras B) atidarykite virtualųjį prietaisą Amperemeter B ir pasirinkite 2.24 lentelėje nurodytus nustatymus.

1	5			
Ampermetro B nustatymai				
Matavimo diapazonas	10 mA (DC)			
Darbo režimas	AV			
Šuntas	10 Ω			

2.24 lentelė. Ampermetro B nustatymai

- Nuolatinės srovės (DC) šaltinio virtualiajame prietaise nustatykite 1 V įtampą $U_{\rm S}$.
- Išmatuokite rezistoriaus R1 įtampą U_1 ir atsirandančią srovę I_1 miliamperais (mA), o gautas vertes įrašykite į 2.25 lentelės atitinkamą eilutę.

Us, V	<i>U</i> 1, V	I1, mA	<i>P</i> ₁ , mW			
1						
2						
3						
4						

- Pagal šias vertes nustatykite rezistoriaus galios sąnaudas *P*₁ milivatais (mW), jas taip pat įrašykite į 2.25 lentelę.
- Pakartokite bandymą, kai įėjimo įtampos 2, 5 ir 10 V, ir surašykite rezultatus į atitinkamas 2.25 lentelės eilutes.
- Bandymo schemoje 1 kΩ rezistorių R1 pakeiskite 500 Ω rezistoriumi R2 ir pakartokite matavimų seriją. Rezultatus ir apskaičiuotas galios vertes surašykite į 2.26 lentelę.

$U_{\rm S}, { m V}$	U_2, \mathbf{V}	<i>I</i> ₂ , mA	P_2 , mW
1			
2			
3			
4			

2.26	lentelà	Matavimu	regultatai
2.20.	ienteie.	wataviinų	rezultatal

• Pakartokite bandymą, šį kartą ne su vienu rezistoriumi, o su nuosekliąja R1 ir R2 jungtimi. Išmatuokite dalines įtampas U_1 ir U_2 ant abiejų rezistorių, taip pat per juos abu tekančią srovę I ir naudodamiesi rezultatais apskaičiuokite abiejų rezistorių atskirai galios sąnaudas P_1 ir P_2 , taip pat bendras galios sąnaudas P. Visus rezultatus surašykite į 2.27 lentelę.

Us, V	U_1, V	U_2, \mathbf{V}	I, mA	<i>P</i> ₁ , mW	<i>P</i> ₂ , mW	<i>P</i> , mW
1						
2						
3						
4						

2.27. lentelė. Matavimų ir skaičiavimų rezultatai.

<u>Išvados:</u>